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1. Summary 

This report discusses the research conducted by the U.S. Army Research Laboratory, Vehicle 
Technology Directorate (ARL-VTD) on advanced suspension control.  ARL-VTD research on 
advanced suspension systems should result in a reduction of ground vehicle chassis vibration 
while maintaining tire contact with the road surface. The purpose of this research is to reduce 
vibration-induced fatigue to the Warfighter, as well as to improve the gun shooting precision. 

2. Introduction 

Passive suspension systems for ground vehicles are optimized for passenger comfort or 
road/terrain handling.  Quite often these two goals contradict each other.  Modern suspension 
systems may include control systems that use sensors and actuators to improve both performance 
metrics at the expense of increased complexity and cost. 

The two main groups of advanced suspension systems are divided into fully-active and semi-
active actuators.  Semi-active suspension systems vary spring and damper properties to store or 
remove energy from the system according to the applied control algorithm.  Most commonly, 
this is achieved through variable damping components: variable orifice valves or magneto-
rheological (MR) fluids.  Fully-active suspension systems use actuators to add and remove 
energy from the system.  This is achieved using hydraulic, pneumatic, or electromechanical 
actuators.  This report focuses on fully-active actuator control algorithms. 

The baseline control algorithm for this research is the Linear Quadratic Regulator (LQR).  This 
algorithm has been extended to incorporate future road profile disturbance data through Preview 
Control.  Another algorithm, Generalized Predictive Control, was evaluated with formulations 
for Implicit Disturbances and Explicit Disturbances. Generalized Predictive Control with 
Preview Control was not considered in this completed research work. This will be considered in 
future research. 

3. Modeling and Simulation 

Two primary vehicle models were developed in Mathworks Matlab-Simulink to gain insight into 
the behavior of the vehicle’s suspension subject to various road conditions.  These models were 
idealized representations of a quarter of the vehicle.  The models were implemented in 
Mathworks Matlab/Simulink for simulation. 
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The Quarter Car, as shown in figure 1, is modeled as 25% of the chassis mass riding on a 
suspension system consisting of a spring, damper, and actuator.  This is connected to the wheel, 
which is modeled as a lumped mass with a very stiff spring and very soft damper.  Road 
disturbance is introduced through the wheel suspension system. The control actuator is treated as 
a perfect force generator; thus, there are no dynamics associated with the actuator model. 

 

Figure 1.  Quarter-car suspension model. 

In the representative model shown above, the lumped masses each have a single degree-of-
freedom - vertical motion of the mass centroid; therefore, this is a two-degree-of-freedom (2 
DOF) system.  This system is then modeled as a system of second order differential equations.  
In this linearized model, two assumptions must be noted: 

(1) The tire always remains in contact with the ground, and 

(2) There are no stroke limits for the suspension components. 

 
 
 
 
 
  

 
  

 
  
 
 
 
 

 

   
   
   
   

    

          

                

 
 

  

   
   
  
  

    

 
  

       
       

 

 
  

 
                       

where  

 [x] is the state vector comprised of:   ,   ,    , and    ,  

     is the height of the tire centroid above a starting reference zero, 

     is the height of the chassis centroid above a starting reference zero, 

      is the vertical velocity of the tire, 

      is the vertical velocity of the vehicle chassis 
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 [u] is the control vector comprised of each control actuator 

 [d] is the disturbance vector comprised of:  , and   ,  

 Subscript c indicates the control component of the input matrix, and 

 Subscript d indicates the disturbance component of the input matrix 

The particular parameters chosen for each component in the Quarter Car modeled are listed in 
tables 1 and 2.  These are taken from two papers discussing recent active control research. The 
two sets of vehicle parameters will be referred to as Light Vehicle (2) and Heavy Vehicle (3).  
These models are used to reproduce data for the control systems in this report. This provides a 
common reference point for comparison of the control algorithms; these do not necessarily 
represent parameters for a specific vehicle. 

Table 1.  Light Vehicle Parameters used in research by El Madany, et al., (2). 

Vehicle Parameters – Light Vehicle 
mS 1155.6 kg total chassis (sprung) mass 
mU 28.58 kg tire (unsprung) mass 
KS 19960 N/m suspension spring rate* 
CS 816.46 Ns/m suspension damping* 
KU 155900 N/m tire spring rate 
CU 0 Ns/m tire damping 
1st mode 1.237 Hz chassis natural frequency 
2nd mode 12.15 Hz tire natural frequency 
*stiffness and damping chosen to provide damping ratio of 0.17 

Table 2.  Heavy Vehicle parameters used in algorithm research by van der Aa, et al., (3). 

Vehicle Parameters – Heavy Vehicle 
mS 34600 kg total chassis (sprung) mass 
mU 1350 kg tire (unsprung) mass 
KS 440000 N/m suspension spring rate 
CS 43100 Ns/m suspension damping 
KU 6500000 N/m tire spring rate 
CU 0 Ns/m tire damping 
1st mode 1.055 Hz chassis natural frequency 
2nd mode 10.95 Hz tire natural frequency 

 

4. Controller Methodology 

Several different controllers were considered and employed on the suspension models developed.  
The performance of the controllers was evaluated against each other with the passive suspension 
model as the baseline. These algorithms are multi-input/multi-output controllers. Thus, the 
control command,     , can be a vector where each element corresponds to a value of a specific 
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actuator at time t. The same is applicable for the measured response,     , and external 
disturbances,     . 

All of the algorithms discussed in this research are classified as optimal control algorithms. 
Optimal control algorithms calculate a control command that best satisfy a specified objective 

function. The objective function is often a linear combination of weighted state-vectors, 
measured responses, and control commands integrated.  The minimum of the objective function, 
found by setting the derivative of the objective function to zero, corresponds to the optimum 
command. The weighting matrices serve two purposes. First, they are used to normalize and non-
dimensionalize the input/output data. Thus, large accelerations and small displacements can be 
used to provide a dimensionless objective function.  The second purpose of the weighting 
matrices is that they allow relative performance penalties. For example, high accelerations in the 
crew cabin should be penalized more than the same level of acceleration in the cargo bay. 

These algorithms are formulated as regulators. Regulator Control derives the control command 
required to drive the feedback inputs to zero. Conversely, Tracking Control drives the feedback 
inputs to follow a specified path.  Deadbeat Regulator Control derives the control command 
such that for a discrete-time model the closed loop poles are zero in the complex plane; thus, the 
closed loop system is critically damped. 

Two other concepts are applicable to algorithms in this research. Preview Control or Look-Ahead 

Control measures the external disturbance before it affects the vehicle and incorporates this 
information into the control algorithms.  LQR with Preview Control is discussed below.  System 

Identification is a process where an algorithm identifies the vehicle model based on a history of 
measured inputs and outputs.  Various control laws can then be calculated and applied to the 
vehicle. Generalize Predictive Control algorithms perform a system identification on the fly to 
calculate the control laws. 

4.1 LQR 

Linear Quadratic Regulator is the most basic of the optimal control algorithms.  This control 
algorithm is a full-state feedback controller. Given a perfect model of the vehicle dynamics, the 
optimal control command can be calculated and applied. Full-state feedback requires that every 
state in the model can be measured and fed into the control law.   

Recall the state space model of the vehicle dynamics from the previous section: 

                       

For LQR, the control command is calculated as a matrix gain multiplied by the state-vector. 
Thus, the control command, u, is calculated by  

          ,  

where  
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K is the LQR feedback matrix gain, and  

[x]is the state vector. 

The feedback matrix gain is obtained by building a quadratic objective function, J, and solving 
for the minimum: 

                
 

 

          

where  

Q is a symmetric positive semi-definite matrix that assigns weights to the state vector, 

R is a symmetric positive definite matrix that assigns weights on the control commands,  

N is a symmetric positive semi-definite matrix that assigns weights for the cross-coupled 
terms. N is often assumed to be null. 

The superscript T indicates the vector or matrix transpose 

The minimum is obtained by taking the derivative of the function and setting it equal to zero. 

  
  

  
                   

The equation devolves into an Algebraic Riccati Equation (ARE), and the LQR feedback gain 
matrix is calculated from  

       
  ,  

where P is the solution to the ARE. 

As implemented in this research, LQR feedback control is formulated for discrete time domain. 

4.2 LQR with Preview Control 

Linear Quadratic Regulator with Preview Control extends the LQR with an additional control 
command component based on future disturbance data.  Preview Control was first published by 
Bender (1), and is further developed in papers by El Madany, et al., (2) and van der Aa, et al., 
(3). 

The closed loop state matrix is used to calculate the optimal command for each disturbance in the 
future.  The resulting commands are integrated to provide a weighted augmentation to the LQR 
closed loop control command, as shown below: 

                
              

          

 
, 

where the preview horizon, tPreview, is the time that corresponds to the furthest valid future 
disturbance data point. 



 

6 

The number of samples of future disturbance can be varied based on the capability of the sensor 
and vehicle ground speed.  Again, for this research, this control algorithm was formulated in 
discrete time domain. Performance of the control system for the chosen number of Preview 
samples was compared. 

4.3 GPC with Implicit Disturbance 

Generalized Predictive Controller (GPC), as detailed in a paper by Kvaternik, et al., (4) and the 
text by Juang (5), is a linear, time-invariant, multi-input/multi-output controller that generates an 
Autoregressive with Exogenenous (ARX) model. This means that GPC builds a time-domain 
based model from time-history data of measured responses and control commands. This ARX 
model is used to derive a control law that implements an optimal deadbeat regulator.  GPC is 
capable of performing this system identification and control law generating the model in near-
real-time. The system identification portion requires that the controller inject frequency-rich 
control commands into the system, typically band-limited white noise (random signal with a flat 
power spectral density).  The issued commands and resulting system responses are used to build 
the ARX model. External disturbances are not directly measured and are implicitly accounted for 
in the measured responses. 

The first step in performing System Identification and model calculation is to inject the 
independent white noise signals into all of the control actuators.  This will generate an l-sample 
input/output time history of measured responses, y, and generated commands, u.  These samples 
are arrayed into the input/output data matrix, V. 

  

 
 
 
 
 
 
 
 
 
                        

                      

                      

                  

                  

    
             

              
 
 
 
 
 
 
 
 

 

Given this matrix, the observer Markov parameters,   , can be calculated with the following 
equation: 
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Solve for    by applying the psuedoinverse to V.  The columns of   can be rearranged to provide 
the multi-step output predictor. 

                    

The resulting vehicle model is a weighted sum of the time history data. This can be used to 
predict the future responses given the past history and future commands. 

                       

 

    

 
    

    

    

 
    

    

    

 
    

    

    

 
    

  

The next predicted response is the first row of the previous equation 

                                          

As with LQR, a control law can be designed based on an objective function,  

                
 

 

    

Substituting the expanded equation for [y] yields 

        

    

 
    

    

    

 
    

    

    

 
    

  

 

    

    

 
    

    

    

 
    

    

    

 
    

         
 

 

    

Finding the local minimum of the objective function, J, yields an optimal solution for the control 
commands that minimize the responses. Taking the partial derivative with respect to command, 
[u], and solving for control commands, yields the following: 

 

    

 
    

                   

    

 
    

    

    

 
    

   

Defining the following control law matrices,  

                  , 

                  , 

yields control laws that calculate the next p commands, 

 

    

 
    

     

    

 
    

     

    

 
    

 , 

where      corresponds to the control commands p steps into the future. 

However, only the next control commands are of interest, thus the rows of [u] corresponding to 
future data can be dropped. 
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4.4 GPC with Explicit Disturbance 

Generalized Predictive Controller with Explicit Disturbance, as described in a subsequent 
publication by Kvaternik, et al. (6), is similar to the previous version of GPC, except that now 
the external disturbances are explicitly modeled.  Time histories of controls commands, 
measurement responses, and, now, disturbance measurements are used to generate the ARX 
model for the system.   

                           

These are used to predict future responses based on past responses (including external 
disturbances) and control commands.  In this formulation, it is assumed that the current 
disturbance can be measured.    

                             

 

    

 
    

    

    

 
    

    

    

 
    

    

    

 
    

    

    

 
    

  

As before, the next control commands are calculated by minimizing the objective function; the 
rows corresponding to future control commands are dropped.  Using this extension, the previous 
measured disturbance information can be used. 

5. Road Profiles 

Three road profiles were used to evaluate the algorithms: Sine, Curb, and Perryman 3.  In each 
case, the road profiles were provided as an array of ground distance and vertical heights.  Vehicle 
speed was integrated to track the position along the ground and calculate road height at the next 
time step. 

5.1 Sine 

This road profile was defined by a sine wave with a half-amplitude of 20 cm with a wavelength 
of 1 m.  The intent was to provide a single frequency disturbance that relates to vehicle speed, in 
this case, 1 m/s (3.6 kph) of speed corresponds to 1 Hz excitation.  Figure 2 shows a portion of 
this type of road profile. 
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Figure 2.  Sine road profile. 

5.2 Curb 

This road profile is defined by a 10 cm step rise followed 50 by meters of level surface, and then 
a 10 cm step drop.  The intent was to provide a step input road profile into the system. Note that 
the input was modeled as a step input to the tire. It does not accurately take the geometry of a 
physical tire rolling over curb into account, which would effectively low-pass filter the curb 
input.  Figure 3 shows this road profile. 

 

Figure 3.  Curb road profile. 

5.3 Perryman3 

Perryman 3 is an off-road test track located at Aberdeen Proving Ground.  This road profile is 
intended to evaluate the algorithms against a challenging, “real-world” course. Figure 4 shows 
this road profile. 
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Figure 4.  Perryman 3 road profile. 

6. Simulation Results 

The vehicle models and controllers were implemented in Mathworks Matlab and Simulink.  The 
simulation was run using discrete time steps at 0.01 s (100 Hz) using the ODE5 (Dormand-
Prince) integration method. The simulations were run for 12 s until the model reached steady 
state.  The open loop model was run in parallel with closed-loop LQR, closed-loop LQR with 
Preview Control, GPC with Implicit Disturbances, and GPC with Explicit Disturbances for 
performance comparison studies. The Preview Control block was pre-populated with the          
road profile samples at the start of the simulation.  

Initial conditions for the suspension were equal to zero and the effects of gravity were ignored 
such that the system would be at steady state prior to the addition of external disturbances. 
Vehicle speed was held at a constant value for the entire run. 

The following objective function was used as the metric for comparing algorithm performance 

                       

The values for each simulation were averaged over the 12 s and plotted at multiple vehicle 
speeds.  The measured responses are normalized against the open-loop responses at each speed.  

                      
          

     

 

The actuator forces and powers are normalized against the baseline algorithm, LQR, R=1.   
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This normalization allows a comparison of the algorithms despite the variation in actuator force 
or power. 

                         
                             

                            

 

6.1 Algorithms 

A short comparison of the four control laws operating on two sets of quarter-car parameters and 
three road courses (disturbance inputs) is presented in the discussion below. 

Simulation data based on the Light Vehicle parameters is presented in figures 5, 7, and 12. These 
figures were generated using the following algorithm parameters, as shown in table 3. 

 

Figure 5.  Comparison of control algorithms for Light Vehicle parameters on Sine course. 
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Table 3.  Algorithm tuning parameters used for Light Vehicle parameters. 

 LQR LQR with Preview 
Control 

GPC with Implicit 
Disturbance 

GPC with Explicit 
Disturbance 

sensors 4 (internal states) 4 (internal states) 3 3 
actuators 1 

Q 1e8*[1 0 1 1] 1e8*[1 0 1 1] 1e5*[1 1 1] 1e5*[1 1 1] 
R 1 1 1 1 

Preview Horizon - 20 points - - 
ARX model size - - 6 6 
ID sample size - - 400 points 400 points 
ID disturbance - - 10 Hz sine white noise 
Actuator Limit 1.5e4 N 

 
Simulation data using the Heavy Vehicle parameters is presented in figures 6, 8, and 13. These 
figures were generated using the following algorithm parameters, as shown in table 4. 

 

Figure 6.  Comparison of control algorithms for Heavy Vehicle parameters on Sine course. 
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Table 4.  Algorithm tuning parameters used for Heavy Vehicle parameters. 

 LQR LQR with Preview 
Control 

GPC with Implicit 
Disturbance 

GPC with Explicit 
Disturbance 

sensors 4 (internal states) 4 (internal states) 3 3 
actuators 1 

Q 1e12*[1 0 1 1] 1e12*[1 0 1 1] 5e9*[1 1 1] 5e9*[1 1 1] 
R 1 1 1 1 

Preview Horizon - 20 points - - 
ARX model size - - 6 6 
ID sample size - - 400 points 400 points 
ID disturbance - - 10 Hz sine white noise 
Actuator Limit 1.5e6 N 

 

Figures 5 and 6 correspond to the Sine road profile, which represents a single frequency 
disturbance. In the regions where the control laws are valid, both GPC algorithms show higher 
performance. Note that the LQR based algorithms actually perform worse than the open loop 
case near vehicle resonance. Knowledge of disturbance extends the region over which the control 
laws are valid and effective, as demonstrated by GPC with Explicit Disturbances and LQR with 
Preview Control.  

The performance of the algorithms for the Curb road profile is shown in figures 7 and 8.   

 
Figure 7.  Comparison of control algorithms for Light Vehicle parameters on Curb course. 
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Figure 8.  Comparison of control algorithms for Heavy Vehicle parameters on Curb course. 
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Figure 9.  Time history of GPC with implicit disturbance for Light Vehicle parameters on Curb course. 
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Figure 10.  Time history of LQR with preview control for Light Vehicle parameters on Curb course. 
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Figure 11.  Time history of LQR with preview control, close up of step input. 
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Figure 12.  Comparison of control algorithms for Light Vehicle parameters on Perryman 3 course. 
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Figure 13.  Comparison of control algorithms for Heavy Vehicle parameters on Perryman 3 course. 
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(basic LQR algorithm) to 100 points.  Very few preview points are required to achieve large 
reductions in the objective function; large numbers of preview points do not improve the 
performance.  This corresponds well with the results reported by El Madany (2). 

 

Figure 14.  Comparison of effect of preview horizon on LQR. 
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6.3 System Identification 

The LQR formulation requires complete and perfect knowledge of the vehicle model and internal 
states prior to calculation of the control laws.  While this is not practical for most applications, it 
does provide a common algorithm to compare during simulation.  This limitation can be 
mitigated with the Linear Quadratic Gaussian (LQG) formulation, which includes a Kalman 
filter to adjust an imperfect vehicle model. This is not considered in the scope of this currently 
reported research effort. 

Generalized Predictive Control algorithm relies on a system identification to generate control 
laws.  Typically, a given system identification is valid over a small frequency range about the 
primary excitation frequency of the disturbance.  The robustness of the system identification was 
evaluated for different types of model disturbances.  Figures 15 and 16 show the effects of 
system identifications under different disturbance types.  

As shown in figure 15, GPC with Implicit Disturbances generates control laws that are valid over 
a range of 20 Hz and the valid range shifts with the System Identification disturbance frequency.  
Surprisingly, when GPC with Implicit Disturbances generates control laws with disturbances 
composed of multiple frequencies (either white “noise” or a signal composed of 1, 5, 7, 11, and 
17 Hertz), the control laws are not valid over the entire frequency range. This suggests that new 
system identifications are required at higher vehicle speeds. 
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Figure 15.  Comparison of effect of frequency content of disturbance for GPC with implicit disturbances 
system identification. 

The performance of GPC with Explicit Disturbance, as shown in figure 16, improves with the 
addition of white “noise” or composite disturbances.  In each case, it is assumed that the actuator 
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Figure 16.  Comparison of effect of frequency content of disturbance for GPC with explicit disturbances  
system identification. 
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Figure 17.  Effects of multiple system identifications for GPC with implicit disturbance of closed loop 
system in real-time. 
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Figure 18.  LQR algorithm at various control weights. 
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Figure 19.  LQR with 20 point preview control at various control weights. 
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Figure 20.  GPC with implicit disturbances at various control weights. 
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Figure 21.  GPC with explicit disturbances at various control weights. 

7. Conclusions 
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improve performance much.  It is shown that, for a given algorithm, the control weights reduce 
sensor objective function at the same rate that it increases actuator objective function. Therefore, 
control weights can be normalized for comparison across algorithms.  Though control laws based 
on GPC with Implicit Disturbance were valid over a very narrow speed range; the system can be 
re-identified periodically to achieve the best performance of all of the algorithms. 

8. Future Work 

Generalized Predictive Control with Explicit Disturbances will be extended to include Preview 
Control, and non-linear system identification will be incorporated to allow for semi-active 
suspension system development. These controllers will be implemented on high fidelity multi-
body dynamics models and will be experimentally evaluated on a physical suspension test rig. 

A two-degree-of-freedom suspension test rig has been fabricated, as shown in figure 22.  This 
will be used to validate aspects of the control laws in hardware-in-the-loop control.  This test rig 
has variable sprung and unsprung masses of up to 250 kg, representing a 1000 kg vehicle.  The 
tire and suspension components can be reconfigured using commercial-off-the-shelf components 
or custom components as needed. 

 

Figure 22.  2 DOF suspension test rig. 
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List of Symbols, Abbreviations, and Acronyms 

2 DOF two-degree-of-freedom 

A state-space state matrix 

accent – approximated value 

accent – first row of Markov coefficient matrix 

accent · first derivative with respect to time 

accent ·· first derivative with respect to time 

ARE Algebraic Riccati Equation 

ARL U.S. Army Research Laboratory 

ARX Autoregressive with Exogenenous 

B state-space control input matrix 

C damper coefficient 

d external disturbance vector 

F external control force 

GPC Generalized Predictive Control 

J objective function 

K spring Constant 

K Feedback Gain Matrix 

LQG Linear Quadratic Gaussian 

LQR Linear Quadratic Regulator 

m mass 

MR magneto-rheological 

N cross-coupled weighting matrix 

P solution to Algebraic Riccati Equation 

Q response weighting matrix 

R control command weighting matrix 

subscript c property of control command 

subscript d property of external disturbance 
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subscript S property of sprung or chassis mass 

subscript t property of current time step 

subscript U property of unsprung or tire mass 

superscript T matrix transpose 

t current time step 

u control command vector 

VTD Vehicle Technology Directorate 

x state vector 

y measured response vector 

z element of internal state vector 

α Markov response coefficient matrix 

β Markov control coefficient matrix 

δ Markov disturbance coefficient matrix 

τ Markov future command coefficient matrix 



 

33 

NO. OF 
COPIES ORGANIZATION 
 
 1 ADMNSTR 
 ELEC DEFNS TECHL INFO CTR 
  ATTN  DTIC OCP 
  8725 JOHN J KINGMAN RD STE 0944 
  FT BELVOIR VA 22060-6218 
 
 1 CD OFC OF THE SECY OF DEFNS 
  ATTN  ODDRE (R&AT)   
  THE PENTAGON 
  WASHINGTON DC 20301-3080 
 
 1 US ARMY RSRCH DEV AND ENGRG  
  CMND 
  ARMAMENT RSRCH DEV & ENGRG  
  CTR 
  ARMAMENT ENGRG & TECHNLGY  
  CTR 
  ATTN  AMSRD AAR AEF T   
  J  MATTS 
  BLDG 305 
  ABERDEEN PROVING GROUND MD  
  21005-5001 
 
 1 PM TIMS, PROFILER (MMS-P)  
  AN/TMQ-52 
  ATTN  B  GRIFFIES  
  BUILDING 563 
  FT MONMOUTH NJ 07703 
 
 1 US ARMY INFO SYS ENGRG CMND 
  ATTN  AMSEL IE TD  A  RIVERA 
  FT HUACHUCA AZ 85613-5300 
 
 1 COMMANDER 
  US ARMY RDECOM 
  ATTN  AMSRD AMR   
  W C  MCCORKLE 
  5400 FOWLER RD 
  REDSTONE ARSENAL AL 35898-5000 
 
 1 US GOVERNMENT PRINT OFF 
  DEPOSITORY RECEIVING SECTION 
  ATTN  MAIL STOP IDAD  J  TATE 
  732 NORTH CAPITOL ST NW 
  WASHINGTON DC 20402 
 

NO. OF 
COPIES ORGANIZATION 
 
 7 US ARMY RSRCH LAB 
  ATTN  RDRL VTA  H L  EDGE 
  ATTN  RDRL VTA  J  PUSEY 
  ATTN  RDRL VTM  D  LE 
  ATTN  RDRL VTM  M  MURUGAN 
  ATTN  RDRL VTM  R  BROWN  
  (3 HCS) 
  ABERDEEN PROVING GROUND MD  
  21005 
 
 1 US ARMY RSRCH LAB 
  ATTN  RDRL CIM G  T  LANDFRIED 
  BLDG 4600 
  ABERDEEN PROVING GROUND MD  
  21005-5066 
 
 1 US ARMY RSRCH LAB 
  ATTN  RDRL VTA  J A  BORNSTEIN 
  ABERDEEN PROVING GROUND MD  
  21005-5066 
 
 3 US ARMY RSRCH LAB 
  ATTN  IMNE ALC HRR  
  MAIL & RECORDS MGMT 
  ATTN  RDRL CIM L TECHL LIB 
  ATTN  RDRL CIM P TECHL PUB  
  ADELPHI MD 20783-1197 
 
TOTAL:  19 (1 ELEC, 1 CD, 17 HCS) 



 

34 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTENTIONALLY LEFT BLANK. 


